

Hydrotreater Optimization

Catalyst performance prediction model October 2020

Achieve maximum performance

- Monitoring in general: know how healthy the unit is
- Evaluate effect of alternative feedstocks (cracked, VO, ...)
- Optimize performance within constraints (like cycle length)
 - Process worse feeds
 - Increase capacity
 - Reduce H₂ purge (when processing VO)
 - Reduce energy consumption (H_2 /oil, P, ...)
- Support Troubleshooting activities
- Predict remaining cycle length
 - Evaluate Options to extend cycle length

Co-processing vegetable oil

 $\begin{array}{c} CH_2 = 0 - CO - C_{17}H_{33} \\ CH = 0 - CO - C_{17}H_{33} \\ I \end{array} \xrightarrow{3H_2} \begin{array}{c} CH_2 = 0 - CO - C_{17}H_{35} \\ CH = 0 - CO - C_{17}H_{35} \\ CH = 0 - CO - C_{17}H_{35} \end{array}$ $CH_2 - O - CO - C_{17}H_{33}$ $CH_2 - O - CO - C_{17}H_{35}$ $3H_2$ Decarboxylation $3C_{17}H_{35}COOH + C_3H_8$ $C_{17}H_{36} + CO_2$ $3H_2$ H_2 Hydrodeoxygenation Decarbonvlation $C_{18}H_{38} + 2H_2O$ $C_{17}H_{36} + H_2O + CO$

- CO & CO₂ formed
- Purge required to remove CO & CO₂
- Valuable H₂ lost
- Optimization required
 - Maximize HDO over decarb
 - Vary %VO in campaigns
 - Optimize within constraints

Modeling capabilities

- Kinetic model for HDS, HDN, HDO
 - Separate model for conversion of sterically hindered sulfur species
 - N, CO and H₂S inhibition considered
 - Conditions simulated from top to bottom reactor (see next slide)
 - Distinction between hydrogenation and decarboxylation of vegetable oil and animal fat
- Strong deactivation model
 - Coke deposition
 - Metal contamination
- Model to be tuned on unit data

CRTALYST INTELLIGENCE Sarl Trend from top to bottom RX

Predictive power

- Alternative feeds, for instance:
 - More cracked feed with high % aromatic sulfur or high nitrogen
 - Contaminated feeds
 - Vegetable oil:
 - Impact on H₂ consumption, ppH₂ and CO inhibition of HDS reactions
 - Check on optimization H₂ purge (see next slide)
 - Maximize profitability within constraints

CATALYST INTELLIGENCE Sarl Minimize purge when processing VO

Conclusions

- Model allows optimization of:
 - Economics: %cheap feeds
 - Vegetable oil operation
- Prediction of effect of processing vegetable oil or animal fat
- Strong deactivation model allowing the evaluation of alternative operating modes
- Contact Catalyst-Intelligence for more information

Working method

- Tune model on complete cycle from the past
 - With enough variation in feed quality & operating modes
 - Input from pilot plant data is an option
- Model current cycle \rightarrow recommendations
 - Case studies?

Deliverables

- Refinery provides tuning data for HP unit and Catalyst Intelligence tunes the model.
- Refinery asks specific questions about unit optimization (options they have) and Catalyst Intelligence checks what the model predicts
- Catalyst Intelligence issues a report with recommendations and schedules call to discuss
- Evaluation independent of catalyst suppliers
- Data may also be used to write ItB for new load or to evaluate future catalyst offers.

Contact for free quote

- <u>vandergrift@catalyst-intelligence.com</u>
- Tel. +352 621 139822
- Tel. +31 682352452
- Office address: 19^E Haaptstrooss, L-9164 Lipperscheid, Luxembourg